November 6, 2007 

'Inside Hydraulics' Newsletter

1. The ultimate hydraulics tool
2. Hydraulic troubleshooting: do as I say - not as I do
3. Hydraulic equipment reliability - begin with the end
4. Content for your web site or e-zine
5. Help us spread the word
6. Tell us what you think


The ultimate hydraulics tool

My son Benjamin is computer literate. He has been for more than a year. And he's only five. My wife and I are very comfortable with this - because with the right software and supervision, the personal computer is a fabulous learning tool.

It seems no matter what you want to learn these days, there's an interactive software program for it. And I'm not just talking about reading, 'riting and 'rithmetic for my five-year-old.

Several years ago I made a New Year's resolution to learn how to touch type. In years long past this would have involved buying a book, enrolling in a course or both. Not these days. You just get yourself an interactive software program and spend half an hour on day on it - until you've attained the typing speed you need.

The power of the personal computer as a learning tool is something Dr Marian Tumarkin and I have set out to leverage with our Advanced Hydraulics Course we're currently putting the finishing touches on.

This self-study program will include two pieces of hydraulic simulation software to cover computer simulation of both sequential (on/off) and proportional hydraulic circuits. Of course, you'll not only get the installation CDs but also detailed tutorials with examples.

It's our view that the simulation software included with our course is the most effective method available today for learning how to read and interpret hydraulic schematics and understanding how complex hydraulic circuits operate.

Not only that, it enables you to check the operation of a circuit with proposed modifications or specific faults - from the comfort of your home or office, and without any hydraulic hardware or spilling a drop of oil!

From the response received to date, I know many of you are 'champing at the bit' to get hold of this all new hydraulics program. If you're someone who wants to capitalize on the widespread shortage of skilled hydraulics people register now to receive advance notification.

The Nice Things People Say

"As a mechanic with more than 30 years experience, I think Industrial Hydraulic Control is excellent. I use it as my hydraulics reference." Find out more ...

R. Soebandi
Equipment Maintenance Supervisor
Oilfield Service Company

2.   Hydraulic troubleshooting: do as I say - not as I do

If you've read Insider Secrets to Hydraulics, you'll recall that I define hydraulic troubleshooting as a logical process of elimination which begins with checking the easy things first.

The emphasis I put on investigating the easy things first may seem so elementary your inclination may be to disregard this advice. Certainly, if you do follow a logical process of elimination, you will get a result - regardless of whether you check the easy things first or not.

It's just that if you leave anything that's easy to check until last - you'll kick yourself for not giving it your attention in the beginning.

A troubleshooting situation I was involved in recently illustrates this to a tee. If you're skilled in reading hydraulic schematics and wish to follow along, the circuit is here

But even if you're not fluent in schematics, read on - because it's the moral of the story that's important.

The machine in question is a fairground ride. You know the ones. Its designers seem to have one objective in mind - to get you to regurgitate the contents of your stomach. And I'm talking from experience.

When the passengers are strapped in, the boom of the ride is elevated by two lift cylinders (not numbered) top left of schematic. Once elevated, cylinder (58) retracts to remove a locking pin and the passenger carriage is rotated by motor (38).

The main hydraulic pumps are electrically powered. In case of electricity failure or main pump failure, pump (74) powered by an internal combustion engine is used to recover the ride and unload the passengers.

Prior to me receiving the call, there had been a power failure. When pump (74) was used to rotate the carriage to the locking position, rotation was found to be slow and when the carriage went over center - due to the boom not being absolutely vertical when raised - the carriage 'ran away'.

Analysis of the schematic revealed the over-running of the carriage was due to operator error. Load control valve (29) operates in one direction only - the direction of normal rotation. If the operator rotates the carriage in the opposite direction during recovery, over-run is possible.

To prove this, I elevated the boom and rotated the carriage a full revolution in the correct direction using pump (74) and DCV (75). No over-run occurred. Conversely, over-run did occur, as expected, in the opposite direction.

As an aside, it is not practical to prevent this problem by restricting DCV (75) to two positions. Because bi-directional rotation is desirable during recovery for precise positioning of the carriage for locking-pin engagement. But I did propose an alternative solution.

While rotating the carriage using pump (74), I observed rotation speed was indeed painfully slow. But there were no noticeable rotation speed issues during normal operation.

While there's a number of possible points at which flow could be escaping from this circuit, most of them are common to both normal and emergency operation situations.

This focussed my attention on the components that aren't common to both situations: pump (74), check valve (22) - on pump (17) and DCV (75) - which although not drawn as such, is mono-block type with integral relief valve.

Suspecting pump (74) was the culprit, I flow tested it at connection P1. It tested OK. I then connected the flow meter across the service ports of DCV (75). Again, OK. This also eliminated relief valve (44), unloading valve (47), ball valve (77) and check valve (22) on pump (17).

So continuing the logical process of elimination - what next? Looking again at the rotation manifold (circled on the drawing) - which is 30 feet in the air when the ride is operating - I cussed aloud at myself.

With the ride in its parking position, I walked over to this manifold and sure enough, I got nearly two turns out of needle valve (37) in a clockwise direction.

Other than the heat load, the amount of flow passing across this needle valve wasn't an issue during normal operation - due to the amount of flow available from the main pump. But it was very noticeable when using the much smaller flow available from the emergency pump.

With the benefit of hindsight, needle valve (37) was the easiest and therefore the first thing I should have checked. Oh sure, my logical process of elimination was always going to lead me to it. But had I checked it in the beginning - it would have been a five minute troubleshooting exercise instead of two hours.

As this example demonstrates, checking the easy things first involves identifying possible causes of a problem and then investigating them according to ascending degree of difficulty. Rather than in order of perceived probability.

"Thanks for the great work on the two publications, Insider Secrets to Hydraulics and Preventing Hydraulic Failures. I have been in the hydraulics business for the past 20 years and it's very difficult to find any decent material on hydraulic maintenance, troubleshooting and failure analysis. These two books cover it all in easy to understand language... I conduct hydraulic training courses and plan to purchase copies to distribute to my students to share your practical approach to understanding a not so understandable subject."

Paul W. Craven, Certified Fluid Power Specialist
Motion Industries, Inc.

3.   Hydraulic equipment reliability - begin with the end

For a lively discussion on the some of the issues to consider BEFORE you even acquire a piece of hydraulic equipment, read Brendan Casey's article in the September-October 2007 Issue of Machinery Lubrication magazine, available here. To receive a complimentary subscription to this informative magazine (US and Canada only) go to:

4. Content for your web site or e-zine

Need some fresh content for your web site or e-zine? You now have permission to reprint these 'Inside Hydraulics' articles on your web site or in your e-zine, provided:

1. Each article is printed in its full form with no changes.

2. You send an e-mail to to advise us where you'll be publishing them.

3. You include the following acknowledgement at the end of each article:
About the Author: Brendan Casey has more than 17 years experience in the maintenance, repair and overhaul of mobile and industrial hydraulic equipment. For more information on reducing the operating cost and increasing the uptime of your hydraulic equipment, visit his web site:

5. Help us spread the word

If you've found our 'Inside Hydraulics' newsletter interesting and informative, then chances are you have a colleague who would too. Help spread the word about 'Inside Hydraulics' by forwarding this issue to a colleague. If they share your interest in hydraulics, then they will surely appreciate being told about this newsletter.

New subscribers can get the newsletter by completing the form at

6. Tell us what you think

We would love to hear what you think of this issue of our 'Inside Hydraulics' newsletter. And of course, if you have any suggestions for future issues, please send us those too.

Just e-mail the editor at:

Copyright 2000-2007 by All rights reserved.

To subscribe to our Inside Hydraulics Newsletter, go to:


Inside Hydraulics is published by: Pty Ltd
1195 Hay Street
PO Box 1029
West Perth WA 6872