June 7, 2005 

'Inside Hydraulics' Newsletter
http://www.hydraulicsupermarket.com


IN THIS ISSUE
1. Industrial hydraulic control
2. Testing hydraulic cylinders
3. The true value of hydraulic circuit diagrams
4. Content for your web site or e-zine
5. Help us spread the word
6. Tell us what you think

1.

Industrial hydraulic control

An excellent book that effectively tackles the complex subject of hydraulics, by explaining the underlying operating principles and function of components and systems - for all levels of understanding, is now available in our online store.

It's called Industrial Hydraulic Control by Peter Rohner. This is not just another book covering basic hydraulic theory and concepts. Peter Rohner is a University Professor with over 30 years of teaching experience. He is one of the most successful fluid power lecturers and authors in the world today.

And even though the book's title is Industrial Hydraulic Control, the information it contains is just as relevant to mobile hydraulics. These days, topics such as slip-in cartridge (logic) valves, variable pump controls, proportional and servo control, and PLC programming are just as relevant to mobile hydraulics as they are to industrial hydraulics.

Industrial Hydraulic Control is the most comprehensive guide to understanding the complexities of hydraulic circuits and components you could ever hope to get your hands on. For details of what's included in each chapter, and the powerful knowledge you'll gain, go here now: http://www.IndustrialHydraulicControl.com


2.   Testing hydraulic cylinders

In last month's Newsletter, I described the danger associated with the intensification of pressure in double-acting hydraulic cylinders. In this article, I will explain how to use the intensification effect to test the integrity of the piston seal in a double-acting cylinder. Before attempting this test procedure, it is absolutely essential that the danger associated with pressure intensification in a cylinder is fully understood. Therefore, read this article first!

The conventional way of testing the integrity of the piston seal in a double-acting cylinder is to pressurize the cylinder at the end of stroke and measure any leakage past the seal. This is commonly referred to as "end-of-stroke bypass test" (demonstrated here).

The major limitation of the end-of-stroke bypass test, is that it generally doesn't reveal ballooning of the cylinder tube caused by hoop stress as a result of under designed cylinder wall thickness or reduction of wall thickness through excessive honing. The ideal way to test for ballooning of the cylinder tube is to conduct a piston-seal bypass test mid-stroke. The major difficulty with doing this is that the force developed by the cylinder has to be mechanically resisted, which in the case of large diameter, high-pressure cylinders is impractical.

However a mid-stroke bypass test can be conducted hydrostatically using the intensification effect. The necessary circuit is shown in Figure 1 below.

Hydraulic cylinder test circuit

Figure 1. Hydraulic cylinder test circuit.

Test procedure

The procedure for conducting the test is as follows:

  1. Secure the cylinder with its service ports up.
  2. Fill both sides of the cylinder with clean hydraulic fluid through its service ports.
  3. Connect ball valves (1) and (2), gauges (3) and (4), relief valve (5) and directional control valve (6) as shown in Figure 1.
  4. With ball valves (1) and (2) open, stroke the cylinder using the directional control valve (6) multiple times to remove all remaining air from both sides of the cylinder - take care not to 'diesel' the cylinder.
  5. Position the piston rod mid-stroke and close ball valve (2).
  6. With the adjustment on the relief valve (5) backed out, direct flow to the rod side of the cylinder.
  7. Increase the setting of relief valve (5) until the cylinder's rated pressure is seen on gauge (3).
  8. Close ball valve (1) and center directional control valve (6). Note: it is assumed that the hydraulic power unit used to conduct the test has its own over-pressure protection - not shown in Figure 1.
  9. Record the respective pressure readings on gauges (3) and (4) and monitor any change over time.

If the ratio of effective area between the piston and rod side of the cylinder is 2:1, then if the rod side of the cylinder has been pressurized to 3,000 PSI, gauge (2) on the piston side should read 1,500 PSI. If the differential pressure across the piston is not maintained, this indicates a problem with the piston seal or tube.

Safety is paramount

Under no circumstances should flow be directed to the piston side of the cylinder with ball valve (1) closed. Failure of the cylinder and personal injury could result. When conducting this or any other hydrostatic (pressure) test, always wear appropriate personal-protection equipment.


"Thanks for the great work on the two publications, Insider Secrets to Hydraulics and Preventing Hydraulic Failures. I have been in the hydraulics business for the past 20 years and it is very difficult to find any decent material on hydraulic maintenance, troubleshooting and failure analysis. These two books cover it all in easy to understand language... I conduct hydraulic training courses and plan to purchase copies to distribute to my students to share your practical approach to understanding a not so understandable subject."

Paul W. Craven, Certified Fluid Power Specialist
Motion Industries, Inc.



3.   The true value of hydraulic circuit diagrams

For an insight to the real value of hydraulic circuit diagrams, read Brendan Casey's article in the March-April 2005 Issue of Machinery Lubrication magazine, available here. To receive a complimentary subscription to this informative magazine (US and Canada only) go to: http://www.machinerylubrication.com/hydraulic1.asp


4. Content for your web site or e-zine

Need some fresh content for your web site or e-zine? You now have permission to reprint these 'Inside Hydraulics' articles on your web site or in your e-zine, provided:

1. Each article is printed in its full form with no changes.

2. You send an e-mail to editor@hydraulicsupermarket.com to advise us where you'll be publishing them.

3. You include the following acknowledgement at the end of each article:
About the Author: Brendan Casey has more than 16 years experience in the maintenance, repair and overhaul of mobile and industrial hydraulic equipment. For more information on reducing the operating cost and increasing the uptime of your hydraulic equipment, visit his web site: http://www.InsiderSecretsToHydraulics.com


5. Help us spread the word

If you've found our 'Inside Hydraulics' newsletter interesting and informative, then chances are you have a colleague who would too. Help spread the word about 'Inside Hydraulics' by forwarding this issue to a colleague. If they share your interest in hydraulics, then they will surely appreciate being told about this newsletter.

New subscribers can get the newsletter by completing the form at http://www.insidersecretstohydraulics.com


6. Tell us what you think

We would love to hear what you think of this issue of our 'Inside Hydraulics' newsletter. And of course, if you have any suggestions for future issues, please send us those too.

Just e-mail the editor at: newslettersuggestions@hydraulicsupermarket.com

Copyright 2000-2005 by HydraulicSupermarket.com. All rights reserved.


This message has been sent to the following e-mail address:
[EMAIL]

If you got this mailing in error, or do not wish to get any further newsletter mailings from us, send a message with "unsubscribe inside hydraulics" in the subject and [EMAIL] in the body.

To subscribe to our Inside Hydraulics Newsletter, go to the following URL:

http://www.insidersecretstohydraulics.com

 

Inside Hydraulics is published by:
HydraulicSupermarket.com Pty Ltd
PO Box 1029
West Perth WA 6872
Australia